Back to Top

Peer-Reviewed Library

Mazor Robotics technology has been successfully used in the placement of over 120,000 implants in the United States, Asia and Europe.  Numerous peer-reviewed publications and presentations at leading scientific conferences have validated the accuracy, usability, and clinical advantages of spine surgery with Mazor Robotics technology.

Below is a listing of all published clinical evidence that supports the use of Mazor Robotics technology in spine surgery.  Please visit The National Library of Medicine for complete, full-text articles.


  1. Hyun SJ, Kim KJ, Jahng TA.  S2 alar iliac screw placement under robotic guidance for adult spinal deformity patients: technical note. Eur Spine J.
    2017 [Epub ahead of print]
  2. Keric N, Eum DJ, Afghanyar F, et al. Evaluation of surgical strategy of conventional vs. percutaneous robot-assisted spinal trans-pedicular instrumentation in spondylodiscitis. J Robotic Surg 2016 [Epub ahead of print]
  3. Hu X, Lieberman IH. Robotic-guided sacro-pelvic fixation using S2 alar-iliac screws: feasibility and accuracy. Eur Spine J 2016 [Epub ahead of print]
  4. Kim HJ, Kang KT, Park SC et al. Biomechanical advantages of robot-assisted pedicle screw fixation in posterior lumbar interbody fusion compared to free-hand technique in a prospective randomized controlled trial – perspective for patient-specific finite element analysis. Spine J 2016;(16)31094-4
  5. Amr AN, Giese A, Kantelhardt SR. Navigation and robot-aided surgery in the spine: historical review and state of the art Robotic Surg Rsrch Reviews 2014;1:19—26
  6. Hyun SJ, Kim KJ, Jahng TA, Kim HJ. Minimally Invasive, Robotic-vs. Open Fluoroscopic-guided Spinal Instrumented Fusions-a Randomized, Controlled Trial. Spine 2017;42(6):353–358.
  7. Kim HJ, Jung WI, Chang BS et al. A prospective, randomized, controlled trial of robot‐assisted vs. freehand pedicle screw fixation in spine surgery. Int J Med Robotics Comput Assist Surg 2016; 1–7 [Epub ahead of print]
  8. Tsai TH, Wu DS, Su YF, et al. A retrospective study to validate an intraoperative robotic classification system for assessing the accuracy of kirschner wire (K-wire) placements with postoperative computed tomography classification system for assessing the accuracy of pedicle screw placements. Medicine 2016;95(38):e4834
  9. Minfeng G, Huilin Y, Feng Z. Accuracy of robot-assisted pedicle screws placement. Chin J Anat Clin 2016;21(4):326-330
  10. Sensakovic WF, O'Dell MC, Agha A, et al. Radiation Dose Reduction in Robot-Assisted Pediatric Spinal Surgery. Spine 2017;42(7):417-424.
  11. Bederman SS, Hahn P, Colin V, et al. Robotic Guidance for S2-Alar-Iliac Screws in Spinal Deformity Correction. Robotic Guidance for S2-Alar-Iliac Screws in Spinal Deformity Correction. Clin Spine Surg 2016 [Epub ahead of print]
  12. Liu H, Chen W, Wang Z, et al. Comparison of the accuracy between robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis. Int J Comput Assist Radiol Surg. 2016 Dec;11(12):2273-2281
  13. Hyun, SJ, Kim KJ, Jahng TA, Kim HJ.  Efficiency of lead aprons in blocking radiation - how protective are they? Hellion 2016;2(5):e00117
  14. Kuo, KL, Su YF, Wu CH, et al. Assessing the Intraoperative Accuracy of Pedicle Screw Placement by Using a Bone- Mounted Miniature Robot System through Secondary Registration. PLoS ONE 2016;11(4). e0153235
  15. Fujishiro T, Nakaya Y, Fukumoto S, et al. Accuracy of Pedicle Screw Placement with Robotic Guidance System: A Cadaveric Study. Spine 2015;40(24):1882-9
  16. Grimm F, Naros G, Gutenberg A, et al. Blurring the boundaries between frame-based and frameless stereotaxy: feasibility study for brain biopsies performed with the use of a head-mounted robot. J Neurosurg. 2015;123(3):737-42
  17. Schatlo B, Martinez R, Alaid A, et al. Unskilled unawareness and the learning curve in robotic spine surgery. Acta Neurochir 2015;157(10):1819-23
  18. van Dijk JD, van den Ende RP, Stramigioli S, et al. Clinical pedicle screw accuracy and deviation from planning in robot-guided spine surgery. Spine 2015;40(17):E986-91
  19. Hu, X, Scharschmidt, T, Ohnmeiss D. Lieberman, I. Robotic assisted surgeries for the treatment of spine tumors. International Journal of Spine Surgery 2015 Feb 3;9
  20. Kim HJ, Lee SH, Chang BS, et al. Monitoring the Quality of Robot-Assisted Pedicle Screw Fixation in the Lumbar Spine by Using a Cumulative Summation Test. Spine 2015;40(2):87-94.
  21. Dreval ON, Rynkov IP, Kasparova KA, et al. Results of using Spine Assist Mazor in surgical treatment of spine disorders. Problems of Neurosurgery Named After N.N. Burdenko. 2014;78(3):14-20.
  22. Schatlo B, Molliqaj G, Cuvinciuc V, et al. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison. J Neurosurg Spine 2014;20(6):636-43
  23. Bederman SS1, Lopez G, Ji T, Hoang BH. Robotic guidance for en bloc sacrectomy: a case report. Spine 2014;39(23):E1398-401
  24. Kantelhardt SR, Keric N, Conrad J, et al. C-OnSite® for intraoperative 3D control of pedicular screw positions. Acta Neurochir 2014;156(9):1799-805
  25. Onen MR, Simsek M, Naderi S. Robotic Spine Surgery: A Preliminary Report.Turkish Neurosurgery 2014 24(4):512-518
  26. Onen MR, Simsek M, Naderi S.  Robotic Assisted Sacroplasty: A Case Report.Turkish Neurosurgery 2014 24(4):574-578
  27. Barzilay Y, Schroeder JE, Hiller N, et al. Robotic assisted vertebral body augmentation - a radiation reduction tool. Spine 2014;39(2):153-7
  28. Hu, X, Ohnmeiss D, Lieberman IH. What Is the Learning Curve for Robotic-assisted Pedicle Screw Placement in Spine Surgery? Clinical Orthopaedics and Related Research 2013; 472(6):1839-44
  29. Roser F, Tatagiba M, Maier G. Spinal Robotics: Current Applications and Future Perspectives. Neurosurgery 2013;72:A12–A18
  30. Marcus HJ, Cundy TP, Nandi D, et al. Robot-assisted and fluoroscopy-guided pedicle screw placement: a systematic review. Eur Spine J 2014;23(2):291-7
  31. Hu X, Ohnmeiss D, Lieberman IH. Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J 2013;22:661-666
  32. Ringel F, Stüer C, Reinke A, et al. Accuracy of Robot-Assisted Placement of Lumbar and Sacral Pedicle Screws. Spine 2012;37(8):E496–E501
  33. Schizas C, Thein E, Kwiatkowski B, Kulik G. Pedicle screw insertion : robotic assistance versus conventional C-arm fluoroscopy. Acta Orthop. Belg., 2012, 78, 240-245
  34. Lieberman IH, Hardenbrook MA, Wang JC, Guyer RD. Assessment of Pedicle Screw Placement Accuracy, Procedure Time, and Radiation Exposure Using a Miniature Robotic Guidance System. J Spinal Disord Tech 2012;25:241–248
  35. Kantelhardt SR, Martinez R, Baerwinkel S, et al. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J. 2011;20(6):860-868
  36. Devito DP, Kaplan L, Dietl R, et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine 2010;35(24):2109-2115
  37. Birkenmaier C, Suess O, Michael Pfeiffer, et al. The European multicenter trial on the safety and efficacy of guided oblique lumbar interbody fusion (GO-LIF). BMC Musculoskeletal Disorders 2010, 11:199
  38. Schoenmayr R, Kim IS. Why do I use and recommend the use of navigation? ArgoSpine News & J. 2010;22(4):132-135
  39. Konovalov NA, Shevelev IN, Kornienko VN, et al. Robotic assistance in spine surgery. Traumatol Orthoped Rus.[Russian language] 2010;2(56);62-63
  40. Pechlivanis I, Kiriyanthan G, Engelhardt M, et al. Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system, first experiences and accuracy of screw placement. Spine 2009;34(4):392–398
  41. Shoham M, Lieberman IH, Benzel EC, et al. Robotic assisted spinal surgery – from concept to clinical practice. Computer Aided Surgery 2007;12(2):105–115
  42. Togawa D, Kayanja MM, Reinhardt MK, et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part 2 – evaluation of system accuracy. Neurosurgery 2007;60(ONS Suppl 1):ONS129–ONS139
  43. Lieberman IH, Togawa D, Kayanja MM. Bone-mounted miniature robotic guidance for Pedicle Screw and Translaminar facet screw placement: part I – technical development and a test case result. Neurosurgery 2006;59(3):641-650
  44. Joskovicz L, Shamir R, Freiman M, et al. Image-guided system with miniature robot for precise positioning and targeting in keyhole neurosurgery. Computer Aided Surgery 2006;11( 4):181–193
  45. Sukovich W, Brink-Danan S, Hardenbrook M. Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist. Int J Med Robotics Comput Assist Surg. 2006;2:114–122
  46. Barzilay Y, Liebergall M, Fridlander A, Knoller N. Miniature robotic guidance for spine surgery – introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres. Int J Med Robotics Comput Assist Surg 2006;2:146–153
  47. Shoham M, Burman M, Zehavi E, et al. Bone mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Transactions on Robotics and Automation 2003;19(5):893-901















Download free Adobe Reader for PDF viewing